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Abstract. Longitudinal rolls aligned with the component of gravity parallel to the layer represent the preferred 
mode of convection at onset for a wide range of parameters of the inclined layer problem. As the Rayleigh number 
is increased beyond the critical value the longitudinal rolls tend to become unstable with respect to the wavy 
instability. The three-dimensional convection flows evolving from this instability are studied in this paper by 
numerical computations. The main effect of the wavy distortions of the longitudinal rolls is a decrease of the heat 
transport. The stability of the steady three-dimensional convection flow with respect to disturbances with the same 
periodicity interval in the plane of the layer is also investigated. Various instabilities are found in dependence on the 
Prandtl number P and the angle 3' of inclination and their evolution is studied in a few cases. 

1. Introduct ion 

Convection in an inclined layer heated from below has been studied both experimentally and 

theoretically by numerous investigators during the past decades. In contrast to the case of a 

horizontal layer, the basic state of an inclined layer is characterized by a mean flow with a 
cubic profile. In the following we shall assume that the inclined layer is sufficiently extended 

that end effects do not affect the properties of convection flows very much. In particular we 

shall assume that the temperature distribution of the basic state is governed by conduction 
only and is approximately uniform throughout the plane of the layer. 

The basic state of the inclined layer becomes unstable with respect to transverse or 

longitudinal rolls depending on the Prandtl number P of the fluid and on the angle of 

inclination. As discussed by Gershuni and Zhukhovitskii (1976) longitudinal rolls represent 

the preferred form of convection in high Prandtl number fluids for almost all inclinations as 

long as there exists a finite component  of the temperature gradient opposite to the direction 
of gravity. Even in the case P = 1 longitudinal rolls remain preferred in an inclined layer 

heated from below up to an angle of 77 ° of inclination with respect to the horizontal. Only at 
much lower Prandtl numbers does the source of kinetic energy of the cubic profile flow 
contribute sufficiently to favor the onset of transverse rolls for all angles of inclination. 

Longitudinal rolls are characterized by the property that their heat transport is in- 
dependent  of the angle y of inclination if the normal component  of gravity, g cos y, is used in 

the definition of the Rayleigh number. Other  properties, however, such as the profile of the 

mean flow depend on the parameter y. Accordingly, the stability properties of the longi- 
tudinal convection rolls also exhibit a strong dependence on the angle of inclination. In 
particular the wavy instability has been found to play a dominant role in restricting the 
region of the parameter  space for which longitudinal rolls can be realized. For theoretical 
and experimental work on this topic we refer to the papers of Clever and Busse (1977, 
referred to in the following by CB77) and Ruth et al. (1980a). In the present paper we 
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investigate finite amplitude properties of three-dimensional wavy rolls induced by the onset 
of the wavy instability. 

Convection in an inclined layer heated from below is of considerable interest for 
engineering applications. In particular, in the design of solar energy collectors the efficiency 
of the convective heat transport plays an important role. The fact that this efficiency is 
reduced significantly after the onset of wavy convection rolls has already been noted in the 
experimental study of Ruth et al. (1980a). The numerical results of the present paper 
provide details on the parameter dependence of this effect. Another effect emerging from 
the theoretical study of this paper is the onset of subcritical finite amplitude wavy rolls in 
some cases. This property may be responsible in part for some of the remaining dis- 
crepancies between experimental observations and the prediction of linear theory. 

The mathematical formulation of the problem and the numerical method of solution are 
described in Section 2. While the basic equations are the same as those treated in CB77, 
three-dimensional solutions and their stability properties are analyzed in the present paper in 
contrast to the study of two-dimensional solution and their stability in CB77. The properties 
of steady wavy rolls are shown in Section 3 in comparison with those of longitudinal rolls. 
The results of the stability analysis together with the calculations for two time-dependent 
solutions are presented in Section 4 and a concluding discussion is given in the final section. 

2. Mathematical description of the problem 

We consider a fluid layer between parallel no-slip boundaries inclined at an angle 7 with 
respect to the horizontal. Constant temperatures T 1 and T2(T 2 > Tt) are prescribed at the 
upper and lower boundaries. Using the thickness of the layer as length scale, d2/x as time 
scale where K is the thermal diffusivity, and (T 2 - T 1)/R as scale of the temperature we 
obtain the dimensionless form of the basic equations for a Boussinesq fluid as given by (2.1) 
of CB 77. 

The basic state of the inclined layer as sketched in Fig. 1 is given by the dimensionless 
temperature distribution 00 and the velocity field U0, 

Fig. 1. Sketch of the geometrical configuration of the inclined layer heated from below. 
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U 0 = iR~(z  3 - ¼z) tan 3' -= U0i, (2.1a,b) 

where the Rayleigh number  R is defined by 

R = / 3 g  cos 3"(T 2 - T1) d3/vK. (2.2) 

The  coefficient /3 of thermal expansion, the acceleration g of gravity and the kinematic 
viscosity v have been used in this expression. For the orientation of the coordinate system 
and the associated unit vectors i, j ,  k we refer to Fig. 1. 

The  secondary and tertiary solutions of the basic equations will be described as deviations 
from the primary solution (2.1), 

O = O o + 0 ,  u = Uoi + U(~)i + V x (V x k ~ )  + V x k $ = -  Ui  + &p + etp , (2.3ab) 

where we have assumed that the x, y-average of the velocity field is directed solely in the 
x-direction. 

By operating with k .V x [V x • • .] and k -V x onto the equations of motion and using the 
heat equation we obtain the following three equations for ~, to and O, 

V4A2(49 -~- tan yO2zO - A20 = P - ' { 8 .  [(&# + e~0).V(6¢ + e~)] 

+ (UOx + a,)V2a2~ - o2zzuo~a2,p), (2.4a) 

V2A24, + tan 3"0sO = e - ' { e .  [(~q~ + eq0 .V(8¢ + st/,)] + (Ua  x + 0,)A2q~ - OzUayA2¢ } , 

(2.4b) 

v e O -  RA2~p = (8~p + eO).VO + ( U 3  x + 0 , ) 0 .  (2.4c) 

In addition an equation is needed for the component  U (x) of the mean velocity field, 

2 
(O~z - O,)U (x) + 3z[A2q~(3xz ¢ + 3y~b)] + 6 tan 3' = 0 ,  (2.4d) 

where the bar indicates the average over the x, y-plane. The symbol A 2 has been introduced 
for V 2 - 0~z and P is the Prandtl number,  P = u/K. The boundary conditions for q~, ~b, O and 
U (x) are given by 

~p = a~¢ = ~ = 0 = U (~) = 0 
1 

at z = -+- (2.5) 
2 '  

Longitudinal rolls corresponding to x-independent  steady solutions of the problem (2.4), 
(2.5) and their instabilities have been investigated in CB77. The variables ~, 0 describing 
longitudinal rolls are the same as in a horizontal layer. The parameter  3' only enters the 
solution for ~b and U(X); the convective heat transport as a function of the Rayleigh number  
as defined by (2.2) is thus independent of 3". The main instability of longitudinal rolls is the 
wavy instability which is the origin of some of the three-dimensional forms of convection 
observed in the experiments by Hart  (1971), Ruth et al. (1980a) and others. The following 
analysis is devoted to the study of finite amplitude properties of this type of convection. 
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Since the imaginary part of the growth rate of the wavy instability vanishes we expect an 
evolution of the instability towards a steady three-dimensional solution of equations (2.4). 
Using the Galerkin method we expand the variables q~, qs, O and U tx) into complete systems 
of functions satisfying the boundary conditions (2.5), 

[ COS AOtxX } 
~o = ~ ax~].sin AaxX g~(z)[p(A) cos/.~ayy + (1 -- p(A)) sin I.~Otyy], (2.6a) 

c o s  

~ = ~ c~,~ sin AaxX J sin wr(z + ½)[p(A) sin ~a ,y  + (1 - p(A)) cos ~%y] ,  (2.6b) 
A,/z ,~v 

c o s  1 
0 = ~'~ b~,~ s i n A a ~ x j S i n w r ( z + 5 ) [ p ( A ) c o s / x a y y + ( 1 - p ( A ) ) s i n / x a y y ] ,  (2.6c) 

A, /z ,v  

U (*) = ~ Ui~ sin 2vrr(z + ½ ) ,  (2.6d) 
v 

where the summation runs through positive integers v and non-negative integers A and/z and 
where the function p(A), 

p ( A ) = l  for evenA,  p (A)=0  for oddA (2.7) 

has been introduced in order to capture the symmetry of the convection flow generated by 
the interaction of the wavy instability with the longitudinal rolls. Another aspect of this 
symmetry manifests itself in the selection rule that the upper function in the wavy bracket 
must be chosen for even v +/z and the lower function for odd v +/z. The functions g~(z) 
were first introduced by Chandrasekhar (1961, p. 635) and are also defined in CB77. After 
introducing the representations (2.6) into equations (2.4), multiplying the equations by the 
respective expansion functions and averaging them over the fluid layer, we obtain a system 
of nonlinear algebraic equations for the coefficients a ~ , ,  c ~ ,  bA~,~, U1~. After truncating 
this infinite system of equations it can be solved by a Newton-Raphson method. As in the 
case of similar problems (Clever and Busse, 1987, 1989) the truncation condition in which all 
coefficients and corresponding equations satisfying 

A + / ~ +  v > N  T 

are dropped offers an optimal combination of computational efficiency and economy. 
Almost all computations to be reported in the following have been carried out for N v = 6, 8 
and 10. In the plots the results obtained for N r = 10 are shown provided they differ by less 
than a few percent from those obtained for N r = 8. Only at the highest values of R N v = 12 
has also been used. 

The Galerkin method offers the opportunity for a relatively simple analysis of the stability 
of the steady three-dimensional solutions. Arbitrary infinitesimal disturbances can be 
superimposed onto the steady solution and their growth rate can be determined. Here we 
shall restrict the analysis to those disturbances which fit the x,y-periodicity interval of the 
steady solution. This procedure excludes disturbances with finite Floquet exponents which 
are usually of lesser importance. The main reason for this restriction is that disturbances 
which fit the periodicity interval of the steady solution can be separated into four subsets 
differing in their symmetries with respect to the steady solution. This separation facilitates 
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the stability analysis enormously since the eigenvalues of much smaller matrices must be 
evaluated. The infinitesimal disturbances that we are considering can thus be represented in 
the form 

cos ACtxX ) 
= ~ a*~'~ sin Aa~x )g.(z)[ /~(h)  cos  la.Olyy + (1 --/7(A)) sin tXOtyy] exp(tr t) ,  

A, / .~ ,v  

(2.8a) 

~ f c o S a a x X ]  

A , / .L,v  

sin vzr(z + 1)[/~(A) sin/~ayy + (1 - /~(h) )  cos/x%y] exp((rt) ,  

(2.8b) 

~ fcos  h % x ]  
= ~ ba"~/sin A%x / sin vTr(z + ½)[/~(A) cos tz%y + (1 -/~(A)) sin I~ayy] exp(o-t), 

A,/~,v 
(2.8c) 

L~ (x'y) = ~]  p(1))O(v x'y) sin vTr(z + ½) exp(o-t), 
v 

(2.8d) 

where the four classes SE, SO, AE ,  A O  can be distinguished according to the following 
definitions: 

S: /~ (A)=p(A) ,  A: /~(A)= 1 - p ( A ) ,  (2.9a) 

E(O):  Upper (lower) functions in the wavy brackets correspond to even v + p~ and lower 
(upper) functions correspond to odd u + / z .  (2.9b) 

The disturbance mean flow (2.8d) for the classes S is directed solely in the x-direction, while 
for the classes A only a disturbance mean flow in the y-direction can exist. The mean flows 
are symmetric (antisymmetric) with respect to the plane z = 0 in the classes SO and A E  (SE 
and A O ) .  Accordingly/)(u)  = p(v)  holds for SO and A E  and/) (v)  = 1 - p i u )  for SE and 
AO.  

3. Steady three-dimensional convection flows 

Three-dimensional solutions of the form (2.6) have been obtained for a variety of Prandtl 
numbers and angles of inclinations. The wavenumber ay has been fixed at the critical value 
a C = 3.117 for the onset of longitudinal convection rolls because those rolls remain stable up 
to the Rayleigh number R n for the onset of the wavy instability. Once the threshold value 
R n is exceeded, wavy roll solutions exist for a broad band of wavenumbers a x. Since the 
value a x of the strongest growing disturbance increases significantly with R beyond the 
threshold value R,t according to CB77 and since typical observations (Hart,  1971) of 
experimentally realized wavy rolls exhibit relatively large values of a x, we have chosen 
values of a x which appear to be representative for the wavy roll regime. 

For all cases that have been studied, the transition from longitudinal rolls to wavy rolls 
causes a drop in the convective heat transport. A typical example can be seen in Fig. 2 in 
which results for the case of Prandtl number P -- 12 have been plotted. There thus exists a 
region for which the Nusseit number decreases with increasing Rayleigh number. For lower 
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Fig. 2. Nusselt number N (solid lines), shear Nusselt number S (dashed lines) and kinetic energy of the mean flow 
E,,r (dash-dotted lines) for longitudinal rolls and wavy rolls with a x = 1.5 (bifurcating at R - Rc = 1.6- 103) and with 
% = 2.0 starting at about R - R c = 3.8.103. The wavy rolls become unstable at the Rayleigh numbers indicated by 
short lines (dotted for a x = 1.5, dash-double-dotted for a x = 2.0). The parameters P = 12, 3, = 60 °, ay = 3.117 have 
been assumed. 

P r a n d t l  n u m b e r s  this effect  is less p r o n o u n c e d ,  bu t  the  g rowth  of  the  Nusse l t  n u m b e r  is 

a lways  r e d u c e d  in c o m p a r i s o n  with the  case of  long i tud ina l  rolls.  

In  ana logy  to the  Nusse l t  n u m b e r  N which  is def ined  as the  ra t io  of  the  hea t  t r a n s p o r t  with 

and  wi thou t  convec t ion ,  the  shea r  Nusse l t  n u m b e r  S can be  def ined  as the  ra t io  of  the  shea r  

s t resses  at  the  wal ls  in the  p re sence  and in the  absence  of  convec t ion ,  

S~-[--~z U / O  Uo]z=+_ . (3 .1 ,  

L o n g i t u d i n a l  convec t ion  rol ls  a re  very  effect ive  in r educ ing  the shea r  s tress  p r imar i l y  be c a use  

an e f fec t ive  hea t  t r a n s p o r t  dec reases  the  m e a n  t e m p e r a t u r e  g r ad i en t  in the  in t e r io r  of  l ayer  

which  is r e spons ib l e  for  dr iv ing  the  cubic  prof i le  flow. It  is thus  not  surpr i s ing  tha t  an 

i nc rea se  of  S occurs  t o g e t h e r  wi th  a dec rea se  of  N. The  k ine t ic  ene rgy  of  the  m e a n  flow, 

g m  f = 1 ( U 2 ) ( 3 . 2 )  

also inc reases  wi th  the  onse t  of  wavy  rolls.  H e r e  the  angu la r  b r acke t s  ind ica te  the  ave rage  

o v e r  t he  fluid layer .  

A n o t h e r  in te res t ing  effect  tha t  can  be  seen  in Fig.  2 is the  subcr i t ica l  onse t  of  wavy  rol ls  

for  l a rge r  va lues  of  a x, say a x ~> 2. Because  on  the  inve r t ed  par t  of  the  so lu t ion  b r anch  the 

n u m e r i c a l  s cheme  does  no t  converge ,  the  t h r e e - d i m e n s i o n a l  so lu t ion  in the  case  % = 2.0 is 

no t  c o n n e c t e d  in the  f igure wi th  a b i fu rca t ion  po in t  on the  long i tud ina l  rol l  so lu t ion .  The  

n u m e r i c a l  s cheme  mimics  the  phys ica l  sys tem in this  r e spec t  s ince the  i nve r t ed  pa r t  of  the  

b i fu r ca t i ng  b r a n c h  can also no t  be  rea l i zed  because  of  its ins tabi l i ty .  

In  Fig.  3 the  k ine t ic  ene rg ies  of  the  f luctuat ing c o m p o n e n t s  of  the  ve loc i ty  field a re  shown 

which  a re  de f ined  by  

Epo ,-= ½ (IV x (V x k~0)12>, (3 .3a)  
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Fig. 3. Same as in Fig. 2 except that Epo ~ (solid lines) and E,o , (dashed lines) have been plotted. 

Etor ~ ½(Iv xkel~>. (3.3b) 

As is evident from the figure, these quantities increase roughly in proportion to R - R c for 
longitudinal rolls, but vary much less rapidly with R after the onset of wavy rolls. 

In Figs 4 through 6 results for water (P = 7) are shown for two different angles of 
inclination. The change in the heat transport caused by the onset of wavy rolls is less 
dramatic than in the case P--12 and a tendency towards a recovery of the transport 
efficiency can be noticed at higher Rayleigh numbers. This latter tendency is especially 
pronounced at the high inclination of y -- 80 ° where it has also been found that the energy of 
the poloidal component of flow can grow to values much higher than the corresponding 
values of longitudinal rolls. This result may indicate a tendency towards the realisation of 
transverse rolls which are a strong competitor for longitudinal rolls at high inclinations 
according to linear theory. 

' ' I i , i , [ I t i , , , , [ 
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1.0 i- ..- . 
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: i : 

0 .1  , ~ I i~ , , ~11  I I i  J . . . .  I 

5 10 a 2 5 10 4 2 

R-Ro 
Fig. 4. Nusselt number N in the case P = 7, ay = 3.117 for longitudinal rolls (solid line) and wavy rolls with a x = 1.5 
(dashed line) and o~ x = 2.0 (dash-dotted) for 7 = 60 ° and with o~, = 1.5 (dotted) and ax = 2.0 (dash double-dotted) 
for 31 = 80 °. The Rayleigh numbers at which the respective wavy rolls become unstable are indicated at the abscissa. 
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Fig. 5. Shear Nusselt numbers (descending solid line and attached branches) and Epo I for the same cases as in Fig. 4. 

Whi le  the Prandt l  n u m b e r  of  water  at r o o m  tempera tu re  is 7, it decreases rapidly with 
increasing t empera tu re  and reaches a value of  about  2.5 at 60°C. This p roper ty  has 

mot iva ted  the computa t ions  for  the case P = 2.5 displayed in Figs 7 and 8. It is evident  f rom 

these figures that  the results resemble  qualitatively those ob ta ined  in the higher  Prandt l  
n u m b e r  cases. Since the difference R , -  R c be tween  the thresholds for  wavy rolls and 

longi tudinal  rolls increases almost  p ropor t iona l  to p2 according to Fig. 10 of  CB77,  the 

curves  shown in Figs 7 and 8 are shifted to much lower  values of  R in compar i son  to those o f  

the prev ious  figures. 
Because  o f  the general  similarity of  the evolut ion of  wavy rolls for different  values of  7 

and  P, we show only a few representa t ive  plots of  the flow structure.  The  lef t -hand co lumn of  

Fig. 9 shows the relatively smooth  dependence  of  the flow field in the case of  lower  

inclination,  lower  Prandt l  number ,  and lower Rayleigh number ,  while all of  these parameters  

assume higher  values in the case of  the r ight-hand column,  where  much  smaller flow 

st ructures  b e c o m e  visible. It is r emarkab le  that  the isotherms are almost  identical to the lines 

2 I0 z 

1 0  4 . . . . . .  ~ . . . . . . . . .  : c - - - ' -  . . . . . . .  . . . . . . .  , 
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1 0  s 1 0  o 

5 "~ ...... 5 
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1/-,i 2 , , .... I , , , .... I 2 

2 5 103 2 5 104 2 

R-R c 

Fig. 6. Eml (solid lines for 7 = 60 °, dotted lines for ~/= 80 °) and E,o, (dashed lines for ~, = 60 °, dash-dotted lines for 
3' = 80 °) for the same parameter values as in Fig. 4. 
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Fig. 7. Nusse l t  n u m b e r  N (solid lines), shear  Nussel t  n u m b e r  S (dashed lines), and E~/ (dash-dot ted)  for  
longitudinal  rolls and for  bifurcating wavy rolls with cq = 1.5 (bifurcating at R - R~ = 200) and with a~ = 2.0 in the 
case P = 2 . 5 ,  3 , = 4 0  ° , a y = 3 . 1 1 7 .  

of constant velocity in the z-direction in the case of lower Prandtl numbers. While lines of 
positive and negative z-velocity exhibit the expected symmetry in the center plane, z -- 0, a 
considerable asymmetry develops as one moves to planes closer to the boundaries. The plots 
in the middle of the figure exhibit this property quite clearly. The features of wavy rolls in 
the case P = 2.5 are also visible in the case of P = 0.71 shown in Fig. 10. In addition, the 
toroidal component  of the velocity has been plotted in this figure which shows the effect of 
the advection of mean flow by the z-component  of the velocity field. 

Figures 11 through 15 display results obtained for an inclined air layer (P  = 0.71). In Fig. 
11 the Nusselt number  is plotted for a number of different values of 3' and ct x. It is interesting 
to see, that the recovery of the Nusselt number for wavy rolls to values comparable to those 
of longitudinal rolls is almost complete in the case 3' = 25 °. But at higher angles of inclination 
the Nusselt number  deficiency for wavy rolls persists. The change of the shear Nusselt 
number  S induced by wavy rolls and plotted in Fig. 12 is even more dramatic than at the 

0 . 0 2  ~ /  0 .3  E t o r  

EP°l R-Rc 
R - R  c 02  

0.1 

0.00 , , , , , , , i , i l  , . . . . .  0 . 0  

102 2 5 10 a 2 5 104 

R - R  c 

Fig. 8. Epo ~ (solid lines) and E,o r (dashed lines) for the same pa rame te r  values as in Fig. 7. The  Rayleigh n u m b e r s  at 
which the  wavy rolls become  unstable  are indicated at the abscissa (dotted for  a x = 1.5, dash-dot ted  for  a~ = 2.0). 
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i 

Fig. 9. Lines  of  cons tan t  n o r m a l  ve loci ty ,  -A2~0 = cons t . ,  in the p lanes  z = 0 ( top  row) and  z = - 0 . 3  (midd le  row) 
and  i s o t h e r m s  in the  p l ane  z = 0 ( b o t t o m  row) for the  cases  P = 2.5, 3~ = 40 °, R = 3500 (left  co lumn)  and  P = 7, 
"y = 60 a, R = 104 ( r ight  co lumn) ,  a x = 2.0, ay = 3.117 and  N r = 10 have  b e e n  used  in all  cases.  Sol id  l ines  desc r ibe  
pos i t i ve  va lues ,  d a s h e d  l ines  c o r r e s p o n d  to nega t ive  va lues  and  sol id  l ine ad j acen t  to  the  da shed  l ines  ind ica tes  zero .  

The  y - d i r e c t i o n  is upward ,  the  x -d i r ec t ion  t owards  the r ight .  
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Fig. I0. Lines of constant normal velocity, --Azq~ = const., in planes z = 0 (upper left) and z = -0.3 (lower left), 
isotherms in the plane z = 0 (upper right) and streamlines of the toroidal component of the velocity field, 
~0 = const., in the plane z = 0 (lower right) for P = 0.71, R = 2490, y = 40 °, a x = 2.4, % = 3.117. Solid (dashed) lines 
indicate positive (negative) values and the solid line adjacent to the dashed lines describes zero. The y-direction is 
upward, the x-direction towards the right. 

h igher  P rand t l  n u m b e r s  main ly  because  the decrease of S with increas ing R owing to the 

act ions  of long i tud ina l  rolls becomes  more  p r o n o u n c e d  at lower Prandt l  number s .  The  

changes  in the energies  of the f luctuat ing and  of the m e a n  velocity fields shown in Figs 13 

th rough  15 are very similar  to those found  in the case of h igher  Prand t l  n u m b e r s  except  for a 

shift owing  to the s t rong d e p e n d e n c e  of RII on P which we have m e n t i o n e d  above.  

In  the  last two Figs 16 and  17, profiles of the m e a n  flow U(z) are shown.  The  ampl i tude  of 

m e a n  flow is r educed  in compar i son  with the cubic profile flow (2. lb ) ,  bu t  no t  as much  as in 
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Fig. 11. Nusselt number  N for longitudinal rolls (solid line) and wavy rolls with ~x = 1.5 (dashed line) and ~ = 2.1 
(dash-dotted) for 7 = 25°, with a x = 1.5 (dotted line) and a x =2 .4  (dash double-dotted) for 7 = 40°, and with 
a x = 1.2 (double-dash-dotted), ax = 1.8 (double-dash double-dotted) and ~x = 2.1 (dash triple-dotted) for 7 = 50°. 
The parameters P = 0.71 and % = 3.117 have been assumed. The Rayleigh numbers at which the respective wavy 
rolls become unstable have bccn indicated at the abscissa. 
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Fig. 12. Same as Fig. 11 for the shear Nussclt number. 

lOa , ' ' '  . . . .  I ' ' ' '  . . . .  I ' ' ' ' ' ' '  

5 .. "'"" 7 ~ 1 

~o ~ . .... .... .~ .~,~.~~. . .  " _~ 

5 " ' "  ~ ~ "-. ."~ "~ 

E m f  "- ,,'~.. / " "  
% -....." / 

1 0  0 I i i i , , , , I  I , , , , , ,  

101 2 5 10 a 2 5 10 a 2 5 104 

R - R  e 

Fig. 13. Kinetic energy of the mean flow Em( for longitudinal rolls and bifurcating solutions of wavy rolls in the 
cases 3' = 25 ° (solid lines), 3, = 40 ° (dashed lines), and 7 = 60 ° (dotted lines). The parameter values are the same as in 
Fig. 11. 
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Fig. 14. S a m e  as Fig. 11 for  Epo~/(R - R~) ins tead o f  N -  1. 
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Fig. 16. M e a n  f low prof i le  U ( z )  for  w a v y  c o n v e c t i o n  rolls  in an  inc l ined  layer  wi th  P = 7,  y = 60  °, a x = 2 .1 ,  
o~y = 3 .117 .  T h e  curves  c o r r e s p o n d  ( lef t  to  r ight)  to  R = 3100,  5000 ,  104, 2 -  104. 
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Fig. 17. Same as Fig. 16, but for P = 0.71, 3' = 40°. The curves correspond to R = 2000 (solid), 3000 (dashed), 5000 
(dash-dotted), 104 (dotted). 

the case of  longitudinal rolls (see Figs 3 and 4 of CB77 for comparison).  The maximum of 
mean  flow profile is shifted towards the boundary with increasing Rayleigh number  since the 
x, y-average of the tempera ture  in the interior of the layer becomes nearly isothermal and 
the buoyancy force driving the mean flow becomes located in the thermal  boundary  layers. 
As must be expected from the Prandtl number  dependence of equations (2.4), the 
convection induced effects on the mean flow are much more  dramatic in the case of air than 

in the case of water. 

4. Instabilities of wavy convection rolls 

The procedure  for the search of growing disturbances has been outlined at the end of Section 
2. Growth  rates or have been obtained for all four classes of disturbances SE, SO, AE,  AO.  
The  results of the computat ions show that disturbances of the class SE, usually yield the 
highest real part  o- r of o- for P ~> 1. In the case of air, P = 0.71, disturbances of the classes SE, 
A E  and A O  are close competi tors  and for P = 0.3 AO disturbances dominate.  

The  instability in the case P ~> 1 always exhibits a finite imaginary part  o" i of the growth 

rate. The period corresponding to the frequency o- i appears  to be roughly related to the 
circulation time in the rolls. Because the growing disturbances do not change the symmetry  
of the steady wavy roll solution, it is relatively easy to follow its evolution by a forward 

integrat ion in time. For this purpose the coefficients alton, b/m n elm n in expressions (2.b) are 
assumed to be functions of time and a Crank-Nicholson  scheme is used for the numerical 
integration. After  transients have died away it is found that a periodic oscillation occurs in 
which the flow appears  to vacillate between the state of longitudinal rolls and a state of 
nearly transverse oriented vortices as is evident from the example shown in Fig. 18. The 
mean  quantities plotted as a function of t ime in Fig. 18a are periodic with half the period of 
oscillation as can be seen from the comparison with the flow field shown in Fig. 18b. The 
interval of growing transport  of heat and momen tum corresponds to the state of nearly 
aligned longitudinal rolls. In the sudden transition to modulated transverse vortices kinetic 
energy of the toroidal component  is converted into kinetic energy of the poloidal component  



0.15 

N- I  

s/ o 

0.10 

0.05 0 
0 3 

T h r e e - d i m e n s i o n a l  c o n v e c t i o n  15 

, , / "\ 
I\ / 

\ \ 
./" ,\ \ 

._..~,.Y \ --'-~.4 ~~ 

i I i I i 

1 2 

t 

400 

lOe.Epol 
Etor 

200 EmI 

Fig. 18a. The  Nussel t  n u m b e r  N (solid line), the shear  Nussel t  n u m b e r  S (dashed) ,  the kinetic energies  of  the 
poloidal  (dash-dot ted) ,  toroidal  (dash double-dot ted)  and mean  (dash tr iple-dotted)  c o m p o n e n t s  of  the velocity field 
as a funct ion of  t ime for vacillating convect ion with R = 1900, P = 0.71, 3, = 60 °, a~ = 1.2, a r = 3.117. 

of the velocity field. But since the longitudinal orientation of the rolls is lost, the transports  
are decreased in this process. After  the decay of the modulated transverse vortices the 
longitudinal rolls start to grow again. 

Since the cases where the vacillation instability occurs are also characterized by relatively 
high angles of inclination where the critical Rayleigh numbers  for the onset of longitudinal 
rolls and for transverse vortices get relatively close, the vacillation between these two states 
is perhaps  not surprising. It must be taken into account in this connection that two- 
dimensional  transverse vortices are not very stable according to the analysis of Nagata  and 
Busse (1983) and that they are replaced by three-dimensional  vortices exhibiting significant 
structure in the transverse direction similar to that of the second picture f rom the top of Fig. 
18b in the middle column. 

While wavy rolls in an air layer with 40 ° inclination and o~ x >/1.8 are unstable with respect 
to the vacillation instability, the instability with the A O  symmetry  and with vanishing ~r i 
p redominates  at lower angles of  inclination and low values of a x, ax <~ 1.5. For intermediate 
cases such as y = 2 5  °, ~x =2 .1  and y = 4 0  °, a~ = 1.5 the preferred instability is of the 
AE- type .  As is evident f rom Fig. 11, the region in which wavy rolls are stable in the case of 
25 ° inclination is so small that we feel forced to conclude that the wavy rolls observed in the 
exper iments  of Ruth et al. (1980a) are not the original wavy rolls analyzed in this paper ,  but 
they are instead those which are already modified by the AE- type  instability which appears  
to be most  relevant for the parameters  of the experiment.  Obviously the effects of this 
modification are not very dramatic  since the observed convection exhibits a close re- 
semblance to wavy rolls. Consistent with this interpretation is the fact that Ruth et al. report  
slight lateral motions whenever  the angle of inclination reaches a value 3" ~> 20 °. This 
proper ty  must be expected in the case of an AE- type  instability according to the discussion at 
the end of Section 2. 

In order  to test this hypothesis,  we have done a forward integration in t ime in the case 
3' = 4 0  °, ax = 1.5, O~y = 3.117, R =2000.  Since the number  of coefficients that must be 
de te rmined  as function of t ime is twice the number  for steady wavy rolls due to symmetry  
considerations,  the computat ions become rather  t ime consuming. The remarkable  result that 
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Fig. 18b. Lines of constant normal velocity at z = - 0 . 3  (left column) and at z = 0 (middle column) and lines of 
constant tO at z = 0 (right column) are shown at equal time steps (At = 0.3034) starting at the time 0.585 of Fig. 18a 
such that half a cycle is completed at the time 2.405 corresponding to the bottom row. Solid (dashed) lines indicate 
positive (negative) values except for the solid line adjacent to the dashed lines which indicates zero. The y-direction 
is upward, the x-direction towards the right. Parameter values are the same as in Fig. 18a. 
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Fig. 19. Lines of constant velocity u S (left column) and constant toroidal stream function ~0 (right) in the plane z = 0 
for steady wavy rolls (top row) and for drifting asymmetric wavy rolls (middle and bottom rows) at two points in 
time, At = 1.0 apart. The parameter values R = 2000, P = 0.71, 3' = 40°, a, = 1.5, a~ = 3.117, N r = 8 have been 
used. 

has b e e n  found  is displayed in Fig. 19. The  growing d is turbances  do indeed  change  the 

or ig inal  wavy roll pa t te rn .  But  after  a short  t rans ient ,  a s ta t ionary  pa t t e rn  of asymmetr ic  

wavy rolls is again a t t a ined  except  for a cons tan t  drift in the t ransverse  direct ion.  This  

d i rec t ion  depends  on  the sign of the critical d is turbances  of A E - t y p e .  Thus ,  left or  right 

dr i f t ing pa t t e rns  can be ob ta ined ,  depend ing  on the choice of init ial  condi t ions .  
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5. Concluding discussion 

Although the problem of inclined layer convection has received considerable attention from 
experimenters, there exist few opportunities for a quantitative comparison of the theoretical 
results of this paper with laboratory observations. The general result that less heat is 
transported by wavy rolls than by longitudinal rolls is borne out by the experimental data of 
Ruth et al. (1980a). For a more detailed discussion of the heat flux data see Ruth et al. 
(1980b). But a quantitative comparison between theory and experiment is difficult for a 
number of reasons. First, the finite extent of experimental layers causes end effects and leads 
to a longitudinal component of the temperature gradient in the basic state which exerts a 
considerable influence on the dynamics of the system (Hart, 1971; Bergholz, 1978). Second, 
the finite lateral extent of the layer and its influence on the mean flow are not represented in 
the theory. The finite conductivity of the bounding surfaces of the enclosed fluid and 
deviations from the Boussinesq approximation also can give rise to asymmetries which may 
cause discrepancies between theory and experiment. For instance, the stationarity of wavy 
rolls which depends on the antisymmetry of the mean flow with respect to the center plane of 
the layer will give way to a time dependence once this symmetry is broken. 

A detailed discussion of the problem of convection in inclined enclosures can be found in 
the book by Schinkel (1980) who also presents new theoretical and experimental results for 
the case of inclined rectangular boxes of finite aspect ratio filled with air. The theoretical 
computations are restricted, however, to the case of two-dimensional transverse rolls. 
Three-dimensional solutions for wavy patterns are described in the present paper for the first 
time. While finite aspect ratios and deviations from the Boussinesq approximation will 
undoubtedly affect quantitative aspects of these solutions, they clearly represent the wavy 
structure seen in experiments as demonstrated by the close similarity between the photo- 
graphs of Hart (1971) and the plots of Figs 9 and 10. The analysis of the time-dependent 
three-dimensional solutions which bifurcate from the wavy rolls according to stability 
analysis are of special interest. The few preliminary cases that we have reported in this paper 
have already exhibited a number of unexpected features and a more systematic study 
appears to be warranted. Perhaps those surprising features such as the vacillations and the 
transverse drift will stimulate new experimental investigations. 

The findings of this paper may have implications for the design of solar heat collectors. 
The presence of convection in an inclined layer strongly reduces the mean circulation which 
transports a considerable amount of heat in inclined layers of finite extent. Secondly, the 
heat transport by wavy rolls is much reduced in comparison with longitudinal rolls. It may 
thus be advantageous to realize the Rayleigh number regime where both the Nusselt number 
and mean flow strength are relatively low. 
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